If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2-13x-210=0
a = 5; b = -13; c = -210;
Δ = b2-4ac
Δ = -132-4·5·(-210)
Δ = 4369
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-13)-\sqrt{4369}}{2*5}=\frac{13-\sqrt{4369}}{10} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-13)+\sqrt{4369}}{2*5}=\frac{13+\sqrt{4369}}{10} $
| 16n=176 | | 6(u-2)-6=-3(-9u+3)-9u | | 6(2x+1)-5(x-3)=2(x+2) | | X-27=3-4x | | 7x+15=x-33 | | 3x-14=x+19 | | 4p-75=p | | v+19=2v | | 2t=t+27 | | 3(x-6)=x+12 | | 2x+23=29-x | | 19017=x+.08x | | 4=9x+3 | | 10n-7=-9n-6 | | 2t=t+26 | | 30+2x=20 | | 2x+12=x+29 | | -16.8v=-12.1v+3.29 | | (3a-5)=(6a-1) | | -18-4v=-7v+15 | | -2f+20=-20+3f-20 | | 16t^2-164t+92=0 | | 8x+6=8x+13 | | -12=2n | | 10(x-2)+15=8x=7 | | -2z=17z-19 | | -7m+3=-9m-7 | | E=25h | | -x-15=93 | | -14+-20=12-12t | | 6+x-4=24 | | 1.92+.15b=5.22 |